Persistent Navigation and Mapping using a Biologically Inspired SLAM System

نویسندگان

  • Michael Milford
  • Gordon Wyeth
چکیده

The challenge of persistent navigation and mapping is to develop an autonomous robot system that can simultaneously localize, map and navigate over the lifetime of the robot with little or no human intervention. Most solutions to the simultaneous localization and mapping (SLAM) problem aim to produce highly accurate maps of areas that are assumed to be static. In contrast, solutions for persistent navigation and mapping must produce reliable goal-directed navigation outcomes in an environment that is assumed to be in constant flux. We investigate the persistent navigation and mapping problem in the context of an autonomous robot that performs mock deliveries in a working office environment over a two-week period. The solution was based on the biologically inspired visual SLAM system, RatSLAM. RatSLAM performed SLAM continuously while interacting with global and local navigation systems, and a task selection module that selected between exploration, delivery, and recharging modes. The robot performed 1,143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), traveled a total distance of more than 40 km over 37 hours of active operation, and recharged autonomously a total of 23 times. The International Journal of Robotics Research Vol. 00, No. 00, Xxxxxxxx 2009, pp. 000–000 DOI: 10.1177/0278364909340592 c The Author(s), 2009. Reprints and permissions: http://www.sagepub.co.uk/journalsPermissions.nav Figures 1–3, 6–12, 15–19, A.1 appear in color online: http://ijr.sagepub.com KEY WORDS—persistent navigation and mapping, SLAM, RatSLAM, biologically inspired

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biologically Inspired Monocular Vision Based Navigation and Mapping in GPS-Denied Environments

This paper presents an in-depth theoretical study of bio-vision inspired feature extraction and depth perception method integrated with vision-based simultaneous localization and mapping (SLAM). We incorporate the key functions of developed visual cortex in several advanced species, including humans, for depth perception and pattern recognition. Our navigation strategy assumes GPS-denied manmad...

متن کامل

A Hierarchical SLAM/GPS/INS Sensor Fusion with WLFP for Flying Robo-SAR's Navigation

In this paper, we present the results of a hierarchical SLAM/GPS/INS/WLFP sensor fusion to be used in navigation system devices. Due to low quality of the inertial sensors, even a short-term GPS failure can lower the integrated navigation performance significantly. In addition, in GPS denied environments, most navigation systems need a separate assisting resource, in order to increase the avail...

متن کامل

RatSLAM: Using Models of Rodent Hippocampus for Robot Navigation and Beyond

The brain circuitry involved in encoding space in rodents has been extensively tested over the past thirty years, with an ever increasing body of knowledge about the components and wiring involved in navigation tasks. The learning and recall of spatial features is known to take place in and around the hippocampus of the rodent, where there is clear evidence of cells that encode the rodent's pos...

متن کامل

Hybrid robot control and SLAM for persistent navigation and mapping

For a mobile robot to operate autonomously in real-world environments, it must have an effective control system and a navigation system capable of providing robust localization, path planning and path execution. In this paper we describe work investigating synergies between mapping and control systems. We have integrated development of a control system for navigating mobile robots and a robot S...

متن کامل

New Adaptive UKF Algorithm to Improve the Accuracy of SLAM

SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2010